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ABSTRACT

Three different statistical algorithms are applied to forecast locally extreme precipitation across the con-

tiguous United States (CONUS) as quantified by 1- and 10-yr average recurrence interval (ARI) exceedances

for 1200–1200UTC forecasts spanning forecast hours 36–60 and 60–84, denoted, respectively, day 2 and day 3.

Predictors come from nearly 11 years of reforecasts from NOAA’s Second-Generation Global Ensemble

Forecast System Reforecast (GEFS/R) model and derive from a variety of thermodynamic and kinematic

variables that characterize the meteorological regime in addition to the quantitative precipitation forecast

(QPF) output from the ensemble. In addition to encompassing nine different atmospheric fields, predictors

also vary in space and time relative to the forecast point. Distinct models are trained for eight different

hydrometeorologically cohesive regions of the CONUS. One algorithm supplies the GEFS/R predictors di-

rectly to a random forest (RF) procedure to produce extreme precipitation forecasts; the second also employs

RFs, but the predictors instead undergo principal component analysis (PCA), and extracted leading com-

ponents are supplied to the RF. In the last algorithm, dimension-reduced predictors are supplied to a logistic

regression (LR) algorithm instead of an RF. A companion paper investigated the quality of the forecasts

produced by these models and other RF-based forecast models. This study is an extension of that work and

explores the internals of these trained models and what physical and statistical insights they reveal about

forecasting extreme precipitation from a global, convection-parameterized model.

1. Introduction

Machine learning algorithms have demonstrated con-

siderable utility in many scientific disciplines, including

computer vision (e.g., Rosten and Drummond 2006),

natural language processing (e.g., Collobert et al. 2011),

and bioinformatics (e.g., Larrañaga et al. 2006). Ma-

chine learning has also been used with considerable

success in a wide range of future prediction scenarios,

from financial market analysis (e.g., Cao and Tay 2003)

to election forecasting (e.g., Bermingham and Smeaton

2011) to numerical weather prediction (NWP; e.g., Hall

et al. 1999; Roebber 2013; Rozas-Larraondo et al. 2014;

McGovern et al. 2017). Recently, these techniques have

been receiving increasing attention and application in

NWP; many of these preliminary forays have demon-

strated considerable utility of these techniques over

historical competitors (e.g., Herman and Schumacher

2016b), with occasional exception (e.g., Applequist

et al. 2002).

One frequently noted criticism of machine learning

forecast models is their lack of interpretability and

neglect of underlying physics and dynamics of the

forecast problem, rendering additional interpretation

and analysis of their output difficult or impossible. These

critiques did not first appear with the emergence of

machine learning; in fact, these qualms with statistical

forecast models have been expressed since the early

days of NWP (e.g., Lorenz 1956). And there is legitimate

reason for these concerns; given the chaotic nature of

the atmosphere system, any model—statistical or dy-

namical—will necessarily have formulaic limitations,

systematic biases, and failure modes regardless of the

level of care exercised during model construction.When

the model’s processes are opaque, it can be difficult to

rationally diagnose these circumstances, and the ability

of the forecaster to add value over the raw guidance is
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inhibited. Thus, even when, for example, a statistical

model exhibits better objective performance compared

with a competing dynamical model, if a human fore-

caster understands the underpinnings and characteris-

tics of the dynamical model but not the statistical model,

he or she may still be able to provide better final fore-

casts using the dynamical guidance over the statistical

guidance. The ‘‘understanding’’ referenced here does

not require a complete and comprehensive mathemati-

cal understanding sufficient to exactly reproduce the

result by hand; even using a very simple dynamical

model, it is extraordinarily difficult to reproduce an ac-

curate forecast by manual means (e.g., Richardson

2007), and seldom are interpreters of model guidance

familiar with numerical specifics, dynamical core par-

ticulars, or parameterization details. Rather, there is a

well-understood overarching process of using data as-

similation to produce an analysis and initialize a model

that embodies the primitive equations governing the

atmosphere in some capacity, then integrating the

model forward in time to produce a forecast. Addi-

tionally, the intermediate steps—output from hours af-

ter initialization but before forecast valid time—are

fully inspectable and comprehensible. In contrast, to

many, statistical models and especially those employing

machine learning seem comparatively opaque; a host of

predictors are ingested and a forecast(s) is produced

with little if any information provided on how the model

got from the predictors it used to the answer it gener-

ated. While a small part of this is perhaps inherent to

statistical forecasting, with improved visualization of

statistical models developed for NWP, physical insights

into how the predictors used relate to the forecasted

phenomenonmay be gained, and ability to deduce likely

biases based on the present meteorology may be

acquired.

Among statistical forecast algorithms, regression

models have the longest and most extensive use in op-

erational NWP (e.g., Glahn and Lowry 1972) and are

perhaps the most easily and directly interpretable

through their regression coefficients. Using the re-

gression coefficients, operational regression models

such as the Statistical Hurricane Intensity Prediction

Scheme (SHIPS; DeMaria and Kaplan 1994) can display

the individual effect of each element of the present

meteorology on the final prediction. With care, this also

allows interpretation of the relative utility of different

pieces of meteorological information in predicting the

forecast phenomenon of interest, in this case, tropical

cyclone intensity (e.g., Jones et al. 2006).Direct inspection

of the parameters is equally insightful for other types of

regression, such as inmultivariate logistic regression (LR)

for probabilistic forecasts (e.g., Bremnes 2004). While

direct interpretability is an attractive quality of re-

gression models, the parametric nature of them and like

algorithms imposes assumptions on the relationship

between the predictors and the predictand or between

predictors themselves when such relationships may not

be accurate or even known or physically understood

(Wilks 2011). Linear and logistic regression, for example,

both impose a fundamentally linear predictor–predictand

relationship and treat predictors independently, not di-

rectly accounting for the covariance between multiple

predictors and their joint relationship with the pre-

dictand.While imposing these restrictions can actually be

helpful when they are physically valid, predictive per-

formance degrades when these imposed assumptions are

invalid.

Especially when the physical relationships are not

known or well quantified, it is often attractive to employ

an algorithm that does not impose such assumptions.

One such example is the random forest (RF) technique

(Breiman 2001). RFs have been used for many different

applications in NWP, including but not limited to pre-

diction of storm-type classification, turbulence, cloud

ceiling and visibility, convective initiation, and hail size

(e.g., Williams 2014; Herman and Schumacher 2016b;

Ahijevych et al. 2016; Gagne et al. 2017; McGovern

et al. 2017). Though the algorithm is more general, the

inner workings of an RF may be diagnosed, like with

regression coefficients for LR, primarily by means of

feature importances (FIs) to be used and discussed in

more detail in this study. While these have already

been used to assess RF NWP models in some past

studies (e.g., Gagne et al. 2014; Herman and Schumacher

2016b), in using locally extreme precipitation fore-

casting as an example, we will demonstrate here that

they can be used to understand spatiotemporal re-

lationships, as well as relationships across atmospheric

fields in predicting the phenomenon of interest—even

when the number of predictors grows large, the event

becomes rare, and algorithmic steps that complicate the

relationship between the predictor inputs and reality are

performed.

Herman and Schumacher (2018) expanded upon

these prior studies using machine learning for NWP in a

variety of ways. While there have been limited prior

studies using machine learning to explicitly investigate

very rare events (e.g., Marzban and Stumpf 1996;

Marzban and Witt 2001) and some prior studies con-

structing statistical models for quantitative precipitation

forecast (QPF; e.g., Hall et al. 1999; Sloughter et al.

2007;Whan and Schmeits 2018, manuscript submitted to

Mon.Wea. Rev.), there has been little published work to

date combining both facets. Herman and Schumacher

(2018) were among the first to do so, training statistical
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models to forecast locally extreme precipitation across

the contiguous United States (CONUS) in the medium

range. The CONUS-wide gridded scope of the models

trained therein is also uncommon among machine

learning models, which are often trained for points (e.g.,

Herman and Schumacher 2016b) or over a limited do-

main (e.g., Gneiting et al. 2005). Furthermore, the scope

of predictors was very large, with thousands of pre-

dictors capturing the spatiotemporal environmental

characteristics of the forecast point during the accumu-

lation period. Many different sensitivity experiments

were performed, and the performance of the model

forecasts was evaluated in detail from both the per-

spective of forecast skill and reliability. Overall, fore-

casts were found to add both considerable skill and

reliability across all of the CONUS, compared with both

climatology and the raw forecasts of the global ensemble

from which the model predictors were derived. How-

ever, the study did not investigate the internals of these

models: that is, how to visualize what they are doing to

get from their input to their output, and what these al-

gorithms and models reveal about the prediction of lo-

cally extreme precipitation events overall.

Using the regression and tree-basedmodels of Herman

and Schumacher (2018), this ‘‘dendrological’’ study in-

vestigates the details of the fitted trees, as well as the

regression models. We illustrate how models based on

seemingly abstract and complex algorithms and tech-

niques can, with modest effort, be readily interpreted

and understood. It is shown that not only can these

models yield more skillfully verifying forecasts than raw

dynamical model output or forecasts derived from sim-

pler, more traditional postprocessing approaches, but

they can also provide both statistical and physical in-

sights into why they behave as they do, as well as insight

into the deficiencies, errors, and limitations of the dy-

namical model predictors on which they are based. In

this study, examination of the Herman and Schumacher

(2018) models sheds insights onto how a global,

convection-parameterized dynamical ensemble behaves

in forecasting extreme precipitation events across the

hydrometeorologically diverse regions of the CONUS,

and on what statistical corrections can be made to im-

prove forecasts thereof. Section 2 briefly summarizes the

methods of Herman and Schumacher (2018) to describe

the underpinnings of the models evaluated in this study

and how they were derived. Section 3 describes how the

models will be visualized and interpreted in this study.

Sections 4, 5, and 6 present results, respectively, for PCA

diagnostics, RF models, and LR models. Section 7

concludes with a synthesis of the findings and a discus-

sion of their implications.

2. Data and methods summary

What follows is an abbreviated description of the full

data and methods of Herman and Schumacher (2018),

highlighting the aspects that are critical for proper in-

terpretation of the results presented herein. The in-

terested reader is encouraged to review the full methods

of that study for a more complete discussion of the

mathematical underpinnings of the algorithms, the jus-

tification of choices made, and the sensitivity experi-

ments performed therein.

The models evaluated in this study are trained to

forecast locally extreme precipitation across the

CONUS for 24-h precipitation accumulations, quanti-

fied with respect to average recurrence interval (ARI)

exceedances. In particular, models are trained to issue

probabilistic forecasts for exceedances of 1- and 10-yr

ARIs within a;0.58 3 0.58 spatial domain during a 24-h

1200–1200 UTC accumulation interval. Forecasts are

made for two different forecast lead times comprising

the 36–60- and 60–84-h periods—denoted, respectively,

day 2 and day 3—with separate models trained for each

period. Unique models are also trained for each of eight

different geographic regions of the CONUS, as depicted

in Fig. 1. Here, the CONUS has been partitioned to

produce cohesive regions with some hydrometeorolog-

ical homogeneity with particular regard to similar

magnitudes of extreme precipitation, similar diurnal and

seasonal precipitation climatologies, and similar storm

types and precipitation processes associated with ex-

treme precipitation.

Dynamical model data used for training the statisti-

cal models in this study come from NOAA’s Second-

Generation Global Ensemble Forecast System

Reforecast (GEFS/R; Hamill et al. 2013) dataset. The

GEFS/R is an 11-member ensemble with T254L42 res-

olution—which corresponds to an effective horizontal

grid spacing of;55 km at 408 latitude—initialized once

daily at 0000 UTC back to December 1984. Forecast

fields evaluated in this study are archived on a grid with

;0.58 horizontal spacing. For day 2 models, forecast

fields use 3-h temporal resolution, while 6-h resolution

is used for day 3 models. Trained models discussed

in this study are based on the ensemble median of a

core set of nine atmospheric fields: accumulated pre-

cipitation (APCP), surface-based convective available

potential energy (CAPE) and convective inhibi-

tion (CIN), precipitable water (PWAT), surface tem-

perature (T2M) and specific humidity (Q2M), surface

zonal (U10) and meridional winds (V10), and mean

sea level pressure (MSLP). Models are trained using

daily forecasts spanning from January 2003 through

August 2013.
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The National Centers for Environmental Prediction

(NCEP) stage IV precipitation analysis product (Lin

and Mitchell 2005) has been created daily in an opera-

tional capacity since December 2001. Stage IV provides

24-h analyses over the CONUS on a ;4.75-km grid. It

uses both rain gauge observations and radar-derived

rainfall estimates to generate an analysis and is further

quality controlled via NWS river forecast centers

(RFCs) to ensure stray radar artifacts and other spurious

anomalies do not appear in the final product. Despite

some limitations (Herman and Schumacher 2016a), its

analysis quality, resolution—allowing relatively accu-

rate quantification of very heavy precipitation—and

data record length make it preferable to other pre-

cipitation analysis products and is therefore used as the

precipitation ‘‘truth’’ for this study.

The return period thresholds (RPTs) associated with

the 1- and 10-yr ARIs are generated using the same

methodology of Herman and Schumacher (2016a),

where CONUS-wide thresholds are produced by stitch-

ing thresholds from several sources. NOAA’s Atlas 14

thresholds (Bonnin et al. 2004, 2006; Perica et al. 2011,

2013), an update from older work and currently under

development, are used wherever they were available at

the time this research began. For five northwestern

states—Washington, Oregon, Idaho, Montana, and

Wyoming—updated thresholds are not available, and

derived Atlas 2 threshold estimates are used instead

(Miller et al. 1973; Herman and Schumacher 2016a). In

the Northeast—New York, Vermont, New Hampshire,

Maine,Massachusetts, Connecticut, andRhode Island—and

Texas, both of which did not have Atlas 14 threshold

estimates at the time research commenced but have

either since received an update or have an update in

progress, Technical Paper 40 (TP-40; Hershfield 1961)

estimates are used. Everywhere else uses the Atlas 14

RPT estimates.

Generating predictors by taking GEFS/R forecast

values from nine different fields every 3 or 6 h over a

24-h forecast period at every grid point within;28 of the
forecast point yields thousands of model predictors. In

addition to the large quantity, they are also highly cor-

related—spatially, temporally, and across variables.

With millions of training examples and thousands of

predictors, the forecast problem can become computa-

tionally intractable, and the correlated variables can

result in overfitting. To address these issues, use of a

preprocessing step whereby the model predictors un-

dergo dimensionality reduction via principal compo-

nents analysis (PCA) is explored. This creates a small set

of uncorrelated predictors that explain the signal in the

forecast data and give insight into the regional modes

of atmospheric variability as depicted in the GEFS/R

model, while leaving the noise in withheld lower-

order principal components (PCs). While PCA has

been mostly applied in the atmospheric sciences for

FIG. 1. Map depicting the regional partitioning of the CONUS used in this study and the labels

ascribed to each region. Adapted from Herman and Schumacher (2018).
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identifying spatial patterns at the largest scales (e.g.,

Thompson and Wallace 1998; Wheeler and Hendon

2004), flavors of PCA have been successfully applied to

identify smaller synoptic and mesoscale features as well

(e.g., Mercer et al. 2012; Peters and Schumacher 2014).

Herman and Schumacher (2018) performed a wide

array of sensitivity experiments, exploring model pre-

dictive performance as a function of predictor temporal

resolution, spatial extent, inclusion or exclusion of dif-

ferent atmospheric fields, use of ensemble information,

algorithmic parameters, and choice of model algorithm.

Tomanage the scope of this study’s analysis, only results

as a function of the last of these is presented. Much like

the skill results presented in Herman and Schumacher

(2018), general physical findings are found not to vary

appreciably as a function of any of these unshown di-

mensions of variability. Three models of Herman and

Schumacher (2018) specifically are evaluated in depth

in this study: 1) the CTL_NPCA model using random

forests and no PCA dimensionality reduction; 2) the

CTL_PCAmodel using random forests with preprocessing

using PCA dimensionality reduction; and 3) the CTL_LR

model using logistic regression and also using PCA pre-

processing. Table 1 provides a summary comparison of

these three models for reference.

Random forests (Breiman 2001) are in essence an

ensemble of decision trees, whereby each tree of the

forest makes an individual prediction of the predictand

outcome; the relative frequencies of each possible

outcome in the ensemble of trees are then used to

make a single probabilistic forecast. Decision trees are

explained in mathematical depth in Herman and

Schumacher (2018); an alternative way to conceptualize

them begins with a many dimensional predictor phase

space, where each predictor has a unique dimension.

Beginning with an unpartitioned phase space (tree

root), a decision tree makes successive splits along axes

of this space, partitioning it into increasingly many

smaller subspaces (splits) and then assigning predictions

to each subspace (leaves). AnRF creates many different

similarly plausible partitions of the subspace, and a

forecast is determined by the subspace labels associated

with the given point in predictor space.

Logistic regression is an implementation of the gen-

eralized linear model, designed for binary predictions

and classification more generally where the predictand

is constrained to be either one outcome or another,

rather than over a continuous space as with linear re-

gression (Wilks 2011). Like with linear regression, lo-

gistic regression uses as its input a linear combination of

the predictors. The difference arises in the use of the

link function. For linear regression, the link is the

identity function; that is, the prediction is the afore-

mentioned linear combination of the predictors. In the

case of logistic regression, the predictor–predictand link

is made through use of the logit function instead (Wilks

2011). In particular, the model output in multinomial

logistic regression—the probability of each event

class—is given by use of a generalization of the logistic

function:

P(y5 kjx)5 ex
Twk

�
K

j51

ex
Twk

, (1)

where k is the event class, x is the predictor vector, and

w is the vector of regression coefficients. Note that

separate coefficient vectors are computed for each

event class.

3. Methods: Model properties and assessment

One of the most powerful aspects of machine learn-

ing algorithms—and RFs in particular—is finding pat-

terns in the supplied training data. Because of the

extent and diversity of the data supplied in these ex-

periments, the RFs trained for this study have the

theoretical capability of diagnosing and automatically

correcting for various kinds of GEFS/R model biases.

In particular, context-dependent quantitative biases,

such as GEFS/R QPF being systematically too high or

too low, may be diagnosed; spatial displacement biases

in the placement of extreme precipitation features may

be diagnosed; and temporal biases in the initiation or

progression of extreme precipitation features may also

be diagnosed to some extent. These can be at least

partially visualized through RF FIs. The most intuitive

way to conceptualize their quantitative significance is

TABLE 1. Summary of the models trained in this study and the

corresponding names designated to the models. An ‘‘3’’ indicates

the process is performed or the information is used; a lack of one

indicates the opposite. MEDIAN corresponds to the ensemble

median. Horizontal radius is listed in grid boxes from forecast

point; time step denotes the number of hours between GEFS/R

forecast field predictors. Slashes indicate the first number applies to

the day 2 version of the model, while the latter number applies to

the day 3 version. Models apply to all eight forecast regions and

have both day 2 and day 3 versions.

Model name CTL_NPCA CTL_PCA CTL_LR

Algorithm RF RF LR

PCA preprocessed 3 3
Ensemble information MEDIAN MEDIAN MEDIAN

Horizontal radius 4 4 4

Time step 3/6 3/6 3/6
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by the number of splits based on the feature summed

over the forest, with each split weighted in proportion

to the number of training samples encountering the

split so that a split at the root node is considered much

more important than a split deep into a tree (Friedman

2001). Values are normalized so that the sum of all

importances is one; an importance of one then in-

dicates that all decision nodes in every tree of the forest

split on the corresponding feature, while an importance

of zero indicates that no decision node splits based

on that feature. Importances are produced for each

input feature; without PCA preprocessing, this means

that an individual importance value is produced for

each forecast point-relative location–forecast time–

atmospheric field combination. In many cases, it is

convenient to present importances summed over one

or more of these dimensions for a summary perspective

of the model output. When PCA preprocessing is per-

formed, the model output is instead importances of

individual PCs in predicting ARI exceedances. FIs

calculated in this way—often termed the ‘‘Gini im-

portance’’—are only one method of providing a sum-

mary representation of an RF (Strobl et al. 2007). In

the leading alternative method, the so-called ‘‘permu-

tation accuracy importance’’ approach (Strobl et al.

2008), for each predictive feature, the feature value for

each sample used to construct a given tree is permuted

to a different sample’s value. Importance is determined

by the decline in the model’s predictive performance

when replacing the true values with the permuted ones.

This is calculated individually for each tree and then

averaged over the entire forest. While this approach

has some advantages over other approaches (e.g.,

Breiman 2001; Strobl et al. 2007, 2008), the ‘‘Gini

importance’’ measure is used for this study for con-

sistency with past studies in the field (e.g., Herman

and Schumacher 2016b; Gagne et al. 2017; Whan

and Schmeits 2018, manuscript submitted to Mon.

Wea. Rev.) and computational simplicity (Pedregosa

et al. 2011).

One of the main advantages of LR is its in-

terpretability; through the regression coefficients,

there is a direct, concrete connection between the

predictors and the forecast predictand. And although

the regression in the CTL_LR model is performed on

the principal components and not the native atmo-

spheric variables, the relationship to the native features

may be readily backed out through the PCA loadings

matrix L:

xTw
k
5w
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PC11w
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PC21w
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PC31⋯1w

k,R
PCR

5w
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M

m51
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!
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m51
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..
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w
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3
7775, (3)

where R is the number of retained PCs,M is the number

of native features, k is the event class, F is the vector

of native features, and w is the vector of regression

coefficients.

Both algorithms have their advantages, disadvan-

tages, and caveats in interpretation. As noted above, LR

has the advantage of a direct quantitative link between

any given predictor of interest and the predictand. RF

FIs, in contrast, give only an ‘‘importance’’ number,

which gives no indication of the sign or magnitude of

the predictor in order to correspond with event obser-

vance. While it can be executed, the task of manually

inspecting the value of every node split based on the pre-

dictor is cumbersome, and it is difficult to draw general

conclusions due to the deeply layered subspaces in-

volved. However, RFs do have major advantages over

LR in interpretation as well. As a linear model, LR

coefficients are constrained to apply globally, but this is

often not an appropriate constraint. Some predictors

may only become important when other conditions are

satisfied—for example, CAPE might only be impor-

tant when there is a lifting mechanism to release the

instability—rendering them insignificant in most cases

but very important under select circumstances. In LR,

where the coefficient applies uniformly regardless of the

circumstances, the regression coefficient would neces-

sarily be small, while the RF FI for the same predictor

could be relatively large by harnessing the predictive
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utility of the variable within a particular subspace of the

larger predictor space. RFs also handle correlated pre-

dictors better than LR. In regression problems, when

one predictor is highly correlated with another, one is

liable to have a situation whereby the ‘‘weight’’ is dis-

proportionately allocated to one predictor over the

other, giving the false appearance that one variable is

highly predictive while the other is not. In RFs, with two

FIG. 2. PC1 loadings for the NGP region. (a)–(i) Loadings associated with the APCP, MSLP,

U10, Q2M, T2M, V10, PWAT, CAPE, and CIN fields, respectively. Filled contours depict

loadings for forecast values at 0000UTCduring the forecast period (forecast hour 48), with reds

indicating positive loadings and blues negative loadings; magenta and yellow contours indicate

negative and positive loadings, respectively, for 1500UTC during the period (forecast hour 39),

while brown and beige contours depict negative and positive loadings for 0900 UTC during the

forecast period (forecast hour 57). Darker colors indicate larger values and, accordingly,

a stronger relationship with the principal component as indicated in the figure color bar.
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highly correlated predictors that are thus approximately

equally predictive, node splits will occur essentially ran-

domly between one and the other, and the RF FIs thus

have a tendency to balance approximately evenly (Gagne

2016). This problem of LR is greatly alleviated in the

CTL_LRmodel by using PCs as the predictors, which are

necessarily constructed to be orthogonal to one another.

However, analyzing these different algorithmic formula-

tions in tandem enables capturing a more complete pic-

ture of the extreme precipitation forecast problem.

4. Results: GEFS/R principal components analysis

Inspection of the leading mode of atmospheric

variability—PC1, the component that explains the most

variance between different days or model initializations—

in Figs. 2 and 3 for the northern Great Plains (NGP) and

Pacific coast (PCST) regions, respectively, and for the

remaining regions in the online supplement, reveals that

the leading mode in each region quite apparently relates

to the seasonal cycle. However, the precise nature of

that seasonal cycle varies by region. Like colors across

subpanels in these figures indicate that atmospheric

fields covary together for the region’s displayed PC,

while contrasting colors indicate one variable is anom-

alously high while the other is low. Deeper reds associ-

ate positively with the PC, with blues associating

negatively; lighter colors indicate that the given pre-

dictor does not relate as strongly with the PC. Spatial

color inhomogeneities within a subpanel suggest the PC

is associated with a spatial gradient in the field, while

loadings changing throughout the forecast period—

shown via comparison of the unfilled contours—are

indicative of some degree of regime change. By hap-

penstance, positive values of PC1 in all regions are

compared with a summer signal, while negative values

are associated with a winter signal. In all regions, the

summer signal is associated at all times of day with high

surface temperature and moisture (e.g., Figs. 2d,e),

higher PWAT and CAPE (e.g., Figs. 2g,h), and lower

MSLP and CIN (e.g., Figs. 2b,i). In almost every region,

the warm-season signal (positive PC1) is weakly asso-

ciated with APCP for the region (e.g., Fig. 2a); in other

words, this states that the warm season is also the wet

season in most regions of the CONUS. However, in the

PCST region, precipitation is predominantly received

during the cool season (Herman and Schumacher

2016a), and this is reflected by negative loadings for the

APCP field seen in Fig. 3a. The primary regional dif-

ferences between the seasonal cycle and reflected in the

PC1 loadings is seen in the wind fields (Figs. 2c,f and 3c,f).

In most regions, including NGP, the warm season is

associated with anomalous southeasterly flow at low

levels, as evidenced by positive V10 loadings (Fig. 2f)

and negative U10 loadings (Fig. 2c). However, this is

not true of the western regions; PCST, like APCP, ex-

hibits the opposite behavior to the eastern regions in the

wind fields, with a warm season characterized by

anomalous northwesterly flow (Figs. 3c,f). The strength

of association with PC1 also varies between atmospheric

fields. The seasonal cycle, at least as reflected in PC1, is

predominantly a thermodynamic and moisture signal;

this is seen by observing larger loading magnitudes with

fields such as Q2M, T2M, and PWAT, compared with

APCP and other fields (cf. Figs. 2d,e,g and 2a–c,f,i).

In one sense, the seasonal cycle, and thus PC1, is

rather trivial—it is already largely known and un-

derstood. It would be possible to train these models with

deseasonalized predictors and an additional predictor(s)

to represent location in the seasonal cycle, and this

prospect is worthy of further investigation in future

work. But this could appreciably harm predictive per-

formance of the model; in many instances, a certain

quantity of a precipitation ingredient such as pre-

cipitable water or CAPE (e.g., 35mm or 1500 J kg21,

respectively) is necessary to generate locally extreme

precipitation-producing storms. By instead supplying

deseasonalized predictors, these physical thresholds,

which may be climatologically much more likely in one

season than another, are severed from the numerical

values of the model predictors. This forces the model to,

in essence, relearn the seasonal cycle via a combination

of the seasonal indicator predictor and deseasonalized

atmospheric predictors, in addition to all of the other

relationships it must diagnose, placing an extra burden

on model training. This would likely sacrifice predictive

accuracy of the trained models, perhaps with the gain

of a more physically insightful PC1.

PC2—the leading mode of atmospheric variability at a

point aside from the seasonal cycle—is depicted for the

NGP and PCST regions in Figs. 4 and 5; PC2 loadings for

other regions may be found in the online supplement.

While PC1s were largely similar between the regions,

there are substantial regional differences between the

PC2 loadings. Generally, while PC1 is predominantly a

thermodynamic signal, many PC2s are predominantly a

kinematic signal, with the largest loading magnitudes

typically seen in U10 and V10. Furthermore, while PC1

loadings had little temporal dependence, for PC2 and

beyond, loadings changing sign or magnitude across the

forecast period are commonplace (e.g., Figs. 4a,b,i). One

notable commonality is that in many regions, PC2 shares

at least some characteristics one might expect associated

with frontal passage, including rapid changes in meridio-

nal winds [e.g., southeast (SE), southwest (SW), and

northeast (NE) regions—see online supplement], pressure
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falls (e.g., Fig. 4b), precipitation andmoisture changes (e.g.,

Figs. 4d,g), and even instability ‘‘advection’’ [e.g., southern

Great Plains (SGP)]. In the PCST region (Fig. 5), where

fronts are thermodynamically weak compared with other

regions, they govern a smaller portion of atmospheric var-

iability in the region and are not associated with PC2. The

signal looks somewhat atmospheric river–like, with heavy

precipitation (Fig. 5a), column-integrated moisture ad-

vecting in from the southwest with strong low-level

southerly flow (Figs. 5f,g), and low pressure and tempera-

ture (Figs. 5b,e), at least when compared with the warm

season. Again, though, some loadings do not appear en-

tirely consistent with this interpretation (e.g., Fig. 5c). None

of the PC2 loadings appear to have a direct physical in-

terpretation that clearly matches with every aspect por-

trayed by the PC, a known drawback imposed by the

combinedorthogonality andmaximumvariance limitations

imposed in the PCA formulation (e.g., Richman 1986).

FIG. 3. As in Fig. 2, but for the PCST region.
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5. Results: RF diagnostics

Associated with an RF is a single FI for each pre-

dictor. When no dimensionality reduction is performed

in advance, there are thousands of GEFS/R predictors;

each predictor is associated with a particular atmo-

spheric field, forecast hour, latitude, and longitude. In

addition, there is a unique RF for each of the eight re-

gions and each of the two forecast periods. Effectively

visualizing and interpreting all of these FIs can be dif-

ficult. To manage the visualization task, RF FIs are first

presented by considering only one dimension of pre-

dictor variability at a time. For example, FIs are con-

sidered as a function of the atmospheric field associated

with the predictor, without regard to the hour or forecast

point-relative location of the predictor. FIs are then

considered by grouping all predictors with the same

forecast hour, and last by grouping predictors with the

same forecast point-relative location. This allows trac-

table visualization of a summary of the FI output of the

GEFS/R and helps identify areas for more detailed

analysis of a subset of ‘‘raw’’ (single predictor) FIs

presented in the second half of this section. For the in-

terested reader, the full set of RF FIs is included in an

online supplement to this paper.

GEFS/R QPF, or APCP, is reliably identified as one

of the most predictive atmospheric fields for observed

extreme precipitation based on RF FIs summed over

space and time for each region of the day 2 version of

the CTL_NPCA model (Fig. 6). This indicates that the

dynamical model, in this case the GEFS/R, has some skill

in directly simulating extreme precipitation. However,

the extent of model APCP being predictive over other

ingredients-based fields varies substantially by region. In

the PCST region, where extreme precipitation events are

predominantly driven by atmospheric rivers and other

large-scale systems advecting moisture over orography

(e.g., Rutz et al. 2014; Herman and Schumacher 2016a), a

convection-parameterized model such as the GEFS/R is

able to adequately simulate the largely stratiform pre-

cipitation processes. This is reflected in the RF FIs shown

in Fig. 6e; the model APCP, which adequately captures

the processes involved in producing most precipitation

events in the region, has a total FI of approximately 50%

of the total, more than 5 times that of any other field. In

other regions that feature a mix of synoptic and convec-

tive events, such as Rocky Mountains (ROCK), NE, and

SE (respectively, Figs. 6a,d,h), APCP is still by far the

most important atmospheric field in predicting ob-

served APCP, but to a much smaller degree than in the

PCST region, with values in the 0.25–0.4 range. In the

regions where extreme precipitation events are most

driven by convective-scale processes unresolvable by

the GEFS/R and that correspondingly have the poorest

verifying raw QPFs in predicting extremes (Herman

and Schumacher 2016a), such as NGP and Midwest

(MDWST) (Figs. 6b,c),model APCP is not even themost

important atmospheric field in predicting ARI exceed-

ances. While still somewhat important, with aggregate

RF FIs of approximately 0.18, APCP is identified as less

predictive than PWAT in these two regions, with PWAT

FIs in the 0.25–0.35 range. One physical explanation is

that where the GEFS/R is poor at predicting extreme

precipitation events by virtue of an inability to resolve

the responsible processes, ingredients such as column-

integrated moisture become more useful predictive

tools. PWAT remains a valuable predictor in other re-

gions as well, with greater importances also observed in

the ROCK, NE, SGP, and SE regions (Figs. 6a,d,g,h). In

one region, the SW (Fig. 6f), surface moisture (Q2M)

was considered more predictive than column-integrated

moisture (PWAT), but this was not generally the case.

In most cases, CAPE and CIN were the least predictive

fields among those examined, but the SW region

(Fig. 6f) was again a considerable anomaly, with CAPE

and CIN being, respectively, the second and third most

important fields, and CAPE FIs nearly equal to those of

APCP. Regional RF FIs at day 3 look largely similar to

the day 2 RF FIs, but some minor differences can be

discerned. The APCP RF FIs are slightly lower in many

of the regions, particularly in the eastern regions

(Figs. 6d,h). In general, ‘‘ingredients’’—fields other than

the direct APCP from the GEFS/R—are relied on

somewhat more at day 3, compared with day 2.

Time series of RF FIs shed insight into which times

forecast guidance provides the most useful predictive

information for the quantity of interest, in this case

ARI exceedances, and can help identify systematic

biases in the parent model’s diurnal climatology of rel-

evant processes, such as convective initiation. They can

also provide insight into when particular information is

of value—whether the information is useful as a pre-

cursor or concurrent with the actual precipitation. Every

region exhibits broadly similar FI time series when ag-

gregated over all variables (Fig. 7, red and blue lines),

with importance minima at both 1200 UTC times—the

beginning and end of the forecast period—and a maxi-

mum during the middle of the day. A combination of

two reasons likely explains this pattern. First, the middle

of the day, in the afternoon and evening hours, is typi-

cally the most convectively active and is the period in

which precipitation and heavy precipitation are most

frequently observed (e.g., Stevenson and Schumacher

2014; Herman and Schumacher 2016a). Second, it is

also, somewhat coincidentally, themiddle of the forecast

period, and thus forecast values at this time can be more
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representative of the period as a whole. In most regions,

the difference between the minimum and maximum

importance values for a given forecast time spans

approximately a factor of 2. There is also more vari-

ability in the time-dependent FIs, comparing, for ex-

ample, the relative width of the red- and cyan-shaded

regions in the panels of Fig. 7 with the error bars of

Fig. 6. Perhaps the most important finding is that the FI

time series partially reflect the diurnal climatology of

extreme precipitation events in each region. FIs are

higher later in the forecast period in regions where ex-

treme precipitation events tend to occur in the evening

and overnight, such as theMDWST and SGP (Figs. 7b,c,g),

while regions where events tend to be more in the af-

ternoon hours, such as the NE and SE (Figs. 7d,h), have

a peak at 0000 UTC and a significant dropoff in impor-

tance by 0600 UTC. While this is seen in the time series

with all fields aggregated, it is especially pronounced

FIG. 4. As in Fig. 2, but for PC2.
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when considering only the APCP FIs (Fig. 7, purple and

maroon lines). While the APCP FIs follow the diurnal

precipitation climatology specific to the forecast region,

PWAT FIs maximize prior to the maximum APCP FIs,

particularly in regions where PWAT is found to be pre-

dictive (e.g., Figs. 7b,c,g), sensibly indicating that the

column moisture of the environments in which storms

form is an important property for predicting locally ex-

treme precipitation.

Compared with the time series of Fig. 7, more stark

regional contrasts are observed for FIs compared in

space (Fig. 8). As would be naively assumed, some re-

gions have an importance maximum near the forecast

point, with decreasing importance with increasing dis-

tance from the forecast location. This is broadly true

of the ROCK, PCST, SW, SGP, and SE regions (Figs.

8a,e–h). The other three regions—NGP, MDWST, and

NE (Figs. 8b–d)—have an importance maximum well

downstream of the forecast point. This summary view

does not provide insight into the precise physical rea-

sons why this may be the case; possible causes

include a combination of precipitation features moving

FIG. 5. As in Fig. 3, but for PC2.
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too quickly, progged systems developing too far down-

stream, or that the downstream environment is simply

better predicted than the environment in which the ex-

treme precipitation events occur, and thus serves as a

better predictor than the fields collocated with the

forecast point. More investigation into possible reasons

will be discussed below. Several other interesting re-

gional differences may be noted. Some regions, such as

PCST and SW (Figs. 8e,f), have a highly concentrated

spatial maximum—with differences in importances

between forecast points spanning nearly an order of

magnitude—meaning that information from a particular

location is much more predictive than surrounding

areas. This likely indicates both increased persistence

and consistency of model biases in these regions, as well

as enhanced predictability overall, consistent with the

higher forecast skill in these regions (Herman and

Schumacher 2018). It also suggests that the RF is likely

tracking specific simulated GEFS/R precipitation fea-

tures in these regions, as opposed to just predicting

based on a general characterization of the environment

in which storms might form, which would yield more

spatially homogeneous FIs. The five aforementioned

regions with a maximum FI point near the forecast point

also do not all have these two points exactly collocated.

In the PCST region (Fig. 8e), the point of maximum

importance is displaced slightly to the south and west of

the forecast point. This is true to some degree in the SW

and SE regions as well (Figs. 8f,h). Meanwhile, a slight

north and particularly west displacement is seen in the

SGP region (Fig. 8g). These displacements may indi-

cate persistent biases in the portrayal of extreme

precipitation elements and/or the ingredients re-

sponsible for them. In the ROCK, SGP, and SE

regions, a secondary maximum well downstream of the

forecast point is observed in a pattern resembling that of

the other northern regions. In the regions that do have a

downstreammaximum, either primary or secondary, the

more western regions—ROCK, NGP, and SGP—have

themaximum also displaced well to the north (and east),

while the regions farther east, such as MDWST and NE,

have the maximum to the south.

Raw FIs for the APCP field in the day 2 version of

the CTL_NPCA model (Fig. 9) reveal that, consistent

with Fig. 7, APCP importances increase to a daytime or

evening maximum with importance minima at 1200 UTC,

with the strength of the cycle varying by region. Be-

cause the accumulation interval lies outside the

forecast period for the front-end 1200 UTC time, the

importance is identified as the lowest there, compared

even with the 0600–1200 UTC QPF at the end of the

forecast period. Correspondingly, in some regions (e.g.,

Figs. 9b1,c1), there is a lack of a clear, cohesive pre-

cipitation feature—as represented by an importance

maximum—at the beginning of the forecast period.

However, at this time or subsequent to it, a clear im-

portance maximum in the precipitation field emerges in

each region and can be seen to track from west to east

across the forecast point-relative domain throughout

the forecast period, tracking the typical progression

of precipitation systems with the mean upper-level flow.

At the beginning of the forecast period, FI maxima

(Fig. 9, column 1) are located 1–2 grid points west of the

forecast point, while by the end (column 5), they are

FIG. 6. Regional comparison of the summed RF FIs for the different atmospheric fields used in the CTL_NPCA model, summed over

the time and two spatial dimensions. The blue bars correspond to the mean summed FIs of the four models trained via cross validation for

the day 2 version of the model; red bars correspond to the day 3 model version. Error bars indicate the minimum and maximum cross-

validation summed FIs. (a)–(h) ROCK, NGP, MDWST, NE, PCST, SW, SGP, and SE regions, respectively.
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located anywhere from 0 to 3 grid points displaced to

the east, with meridional alignment in the PCST region

(Fig. 9a) and far eastern displacement on the five east-

ernmost regions (e.g., Figs. 9b–d). This may be diagnosing

regional climatological differences in the progression

speed of extreme precipitation-producing systems,

which may remain relatively stationary over the com-

plex terrain of PCST, while moving quickly over the

flatter terrain farther east. But another important factor

that it may be identifying is model biases in the pro-

gression of extreme precipitation systems; it may be

noting that GEFS/R systematically moves systems in the

east too quickly and systems in PCST perhaps too

slowly, resulting in APCP well downstream of the

forecast point being predictive of extreme precipitation

in the eastern regions in a way that it is not in the western

regions. More investigation is required to diagnose the

extent to which each of these factors is in play in yielding

this end diagnosis. Of further interest are the different

progressions of FI maxima across different regions. In

the five regions east of the Rocky Mountains—NGP,

MDWST, NE, SGP, and SE (e.g., Figs. 9b–d)—a clear

southwest–northeast progression is seen and is particu-

larly pronounced in the SGP region. The regions me-

ridionally aligned with the Rocky Mountains, ROCK

and SW, have little latitudinal variation with time,

though a slight southwest–northeast is observed in

ROCKand a slight northwest–southeast observed in SW

(see online supplement). PCST, in contrast to most of the

other regions, has a clear northwest–southeast temporal

FI progression (cf. Figs. 9a1 and 9a5). These progressions

are consistent with the typical synoptic flow of locally

extreme precipitation environments of these regions. The

southward progression of postlandfall atmospheric rivers

warrants further investigation but is consistent with

some previous studies (e.g., Ralph et al. 2011), and the

southwest–northeast progression in the northeast is con-

sistentwith both tropical cyclones, which are almost always

progressing poleward after landfall, as well as synop-

tically driven mesoscale systems.

Of additional note are the latitudinal displacements of

FI maxima. Some regions, such as NGP and particularly

SGP (Figs. 9b,c), have a persistent northward displace-

ment of FI maxima relative to the forecast point; this is

likely associated with the well-documented northward

displacement bias of mesoscale convective systems in

convection-parameterized models (e.g., Grams et al.

2006; Wang et al. 2009), including the GEFS/R, which

are also responsible for many of the RPT exceedance

events in these regions. In contrast, a persistent

southward FI displacement is seen in the PCST and,

to a lesser extent, in the SW (Fig. 9a and online sup-

plement). This could perhaps be associated with a less-

documented displacement bias of atmospheric rivers

and other agents responsible for extreme precipitation

in these regions (e.g., Wick et al. 2013). The FIs for the

FIG. 7. Regional comparison of the summedRF FI time series in the CTL_NPCAmodel. Blue and red lines depict, respectively, the day

2 and 3 versions of the model, summed over both spatial dimensions and all atmospheric fields. Values have been renormalized based on

the number of time periods for the version of the model so that the a priori expected importance for each time is unity. The purple and

maroon lines depict the day 2 and day 3 FI time series for only the APCP predictors, summed over the two spatial dimensions. Green and

yellow lines are as with the purple and maroon lines, respectively, but for the PWAT FIs. The same normalization is applied to these time

series as well, leaving a priori expected summed FIs of unity divided by the number of atmospheric fields (nine). Shading about each line

indicates the range of values obtained through the fourfolds of cross validation, with the lines themselves representing mean values of the

fourfolds. (a)–(h) ROCK, NGP, MDWST, NE, PCST, SW, SGP, and SE regions, respectively.
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day 2 and day 3 versions of the model are largely quite

similar (cf. Figs. 9 and 10). Many of the biases and/or

displacements noted in the day 2 RF FIs remain to

varying degrees in the day 3 FIs. Some differences ap-

pear to become slightly more pronounced, such as the

west–east progression differences among the regions,

with the PCST (Fig. 10e) shifting slightly farther west

and SGP and others farther northeast, particularly at the

end of the forecast period (e.g., Fig. 10g). The most

pronounced difference is the general broadening of FI

maxima, likely in association with increasing error and

uncertainty associated with larger forecast lead times.

This is suggestive of a gradual transition in trained RFs

with increasing forecast lead time from bias-correcting a

cohesive precipitation system simulated by the GEFS/R

to predicting based on a more general characterization

of the mean environment. This can be more concretely

confirmed in future work by examining a wider spectrum

of forecast lead times.

Interestingly and somewhat surprisingly, the PWAT

FIs, shown in Fig. 11, exhibit a much different signature

than the APCP FIs. In many regions, such as NGP and

SGP (Figs. 11b,c), the highest PWAT FIs are located

well downstream of the forecast point throughout the

period. In some of these regions, such as the NE and SW

(see online supplement), there is an emphasis to the east

and southeast of the forecast point, whereas in others,

like NGP and SGP (Figs. 11b,c), the northeast corner is

favored. In some cases, the highlighted, more important

portion of the domain appears to correspond to the fa-

vored moisture source for precipitation systems in the

region, such as the Atlantic Ocean in the NE or the Gulf

of Mexico for the SW. This is also the case for PCST

(Fig. 11a), which has a persistent emphasis of impor-

tance well to the south of the forecast point; here, at-

mospheric rivers advect tropical moisture from the

south and west. A couple of regions, in particular the SE

(Fig. 11d), have a PWATFIwest–east progression like is

seen for the APCP FIs in those regions. However, the

PWATFImaxima remain well to the south of theAPCP

FI maxima (cf. Figs. 9d and 11d), again likely capturing

the source from which extreme precipitation-producing

systems develop.

For the CTL_PCA model, this sort of analysis is not

possible due to the transformation from feature ex-

traction during preprocessing. However, analogous in-

terpretation can be made through collective diagnosis of

the PCs (e.g., Figs. 2–5), the relationship between the

PCs and the predictand, and the FIs of the PCs them-

selves (Fig. 12). FI tends to decrease with increasing PC

number, suggesting a correspondence between the

proportion of variance in the native dataset explained by

FIG. 8. Regional comparison of the summed RF FIs for the day 2 version of the CTL_NPCAmodel, summed over variable and time in

the filled contours to give importances as a function of forecast point-relative location. Values presented correspond to the mean value

obtained through fourfolds of cross validation. (a)–(h) ROCK, NGP, MDWST, NE, PCST, SW, SGP, and SE regions, respectively. The

intersection of thick black lines indicates the location of the forecast point within each panel; other locations correspond to displaced

forecast point-relative locations. Maps are drawn with the region centroid at the center of each panel, with state outlines in black un-

derlying the panel to provide quantitative sense of spatial scale. Uniform scales are used for each panel as indicated by the figure

color bars.
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the given PC—which in turn determines its number—

and the predictive ability of the PC. However, this is not

uniformly the case. Every region, with the partial ex-

ception of the NGP region (Fig. 12b), has ‘‘spikes’’ in FI

whereby a particular PC is identified as considerably

more predictive than surrounding PCs that explain

similar underlying variance. These FI maxima occur at

different PC numbers depending on the region, typically

somewhere between PC2 and PC15. In some regions,

the first PC, which embodies the seasonal cycle (e.g.,

Figs. 2, 3), is by far the most predictive PC (e.g.,

Figs. 12b,c). On the other end of the spectrum, in PCST

(Fig. 12e), the leading PC is no more predictive than

much-higher-numbered PCs. In other regions still, such

as ROCK, NE, and SE (Figs. 12a,d,h), PC1 is among

the most predictive, but there is at least one other

PC that is more predictive despite explaining less var-

iance of the underlying forecast data. One such exam-

ple is PC4 for the SE region (Fig. 12h), depicted in

Fig. 13. It is associated strongly with precipitation

throughout the period (Fig. 13a); anomalous moisture,

especially aloft (Fig. 13g); large CIN throughout the

period (Fig. 13i); and low temperature and pressure

(Figs. 13b,e). It is also associated with changing surface

winds, from southeasterly winds at the beginning of the

period to northwesterly by the end of it, with strong

spatial gradients in wind (Figs. 13c,f). As with PC2 in

some regions, this again exhibits some properties con-

sistent with frontal passage, such as drying and a switch

to northerly flow advecting in from the northwest (e.g.,

Figs. 13f,g) and being a cool-season phenomenon

(Fig. 13e), but other elements seem inconsistent, such

as the lack of significant changes in temperature or

pressure anomalies over the course of the period

(Figs. 13b,e). With many different PCs, it can be diffi-

cult to consider all the native predictor–PC and PC–

predictand relationships comprehensively, but in-

spection of the FIs of Fig. 12 can help target which

relationships are most useful to investigate. This also

allows for improved understanding of how the RF al-

gorithm operates.

6. Results: LR diagnostics

In many cases, the CTL_LR identifies the same gen-

eral findings as the RF-based models, just in a different

FIG. 9. Regional comparison of RF FIs for the APCP field spatially relative to the forecast point at different forecast times in the day

2 CTL_NPCA model. (a)–(d) PCST, NGP, SGP, and SE regions, respectively. (from left to right) Forecast integration hours of

36 (1200 UTC), 42 (1800 UTC), 48 (0000 UTC), 54 (0600 UTC), and 60 (1200 UTC), respectively. Values depict the mean FIs obtained

through the fourfolds of cross validation. Note that the scale varies between panels; increments between colors are uniform for each

color bar.
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capacity. One advantage of LR regression coefficients

is that unlike RF FIs, they carry sign information in

addition to just magnitude. Further, one can inspect co-

efficients for different event classes, in this case 1- versus

10-yr ARI exceedances, separately. Though there

are limitations to the quantitative interpretation of

the transformed regression equations, such as those for

the NGP region in Fig. 14, they do still identify some

important features. For the APCP field (Fig. 14a), pos-

itive coefficients unsurprisingly dominate throughout

both space and time, with the one exception of the up-

stream side of the domain at the front-end 1200 UTC

(Fig. 14a1),which actually corresponds to the 0600–1200UTC

QPF from before the start of the forecast period. But

two other aspects are worthy of note. First, the co-

efficient maxima track the expected precipitation from

the upstream to downstream side during the period,

and the most positive coefficients are—like the FIs for

the CTL_NPCA model—found displaced to the north

of the forecast point; this is particularly evident at 0000

and 0600 UTC (Figs. 14a3,a4). Second, the coefficients

are largest for the accumulations from 0000 to 1200

UTC, corresponding to the climatological peak of the

diurnal cycle of extreme precipitation events in NGP

(e.g., Stevenson and Schumacher 2014). Additionally,

the same downstream PWAT FI maximum for the

CTL_NPCA model (Fig. 11b) is reflected also in the

CTL_LR model, with positive coefficient maxima down-

stream of the forecast point throughout the forecast

period (Fig. 14d); a similar phenomenon is observed

with surface moisture (Fig. 14f). It is apparent also that

anomalous southeasterly flow, particularly around 0000

UTC, increases the probability of extreme precipitation

events (Figs. 14g3,h3). Anomalous surface easterlies

promote slower storm motion, and anomalous surface

southerlies tend to yield continued moisture advection

and enhanced storm maintenance (e.g., Doswell et al.

1996). Extreme precipitation event probabilities also

increase with low pressure at the beginning of the period

(Fig. 14i1), increasing to anomalous high pressure by the

end of it (Fig. 14i5). Many extreme precipitation events in

the NGP region are associated with mesoscale convec-

tive systems or other training convection. Composites of

these scenarios (e.g., Peters and Schumacher 2014) have

shown synoptic low pressure, particularly to the south

and west of the eventual MCS, in the preconvective

environment that moves out of the area or decays by the

postconvective environment; this finding in the LR re-

gression coefficients is consistent with those composites.

Last, the regression coefficients somewhat counterintu-

itively indicate that 10-yr 24-h ARI exceedances in the

NGP region are more likely with low daytime CAPE

FIG. 10. As in Fig. 9, but for the day 3 model version.
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and high daytime CIN (Figs. 14b2,c2); this trend re-

verses by the end of the forecast period (Figs. 14b5,c5).

This perhaps suggests that highly extreme events can

occur best when instability is not exhausted from iso-

lated diurnal convection and is instead maintained

for nocturnal mesoscale convective systems that are

responsible for the majority of 10-yr 24-h ARI exceed-

ances in NGP (e.g., Schumacher and Johnson 2006).

The coefficients for the SGP region (Fig. 15) are very

similar, with 10-yr exceedances associated with anoma-

lous southeasterly surface flow (Figs. 15g3,h3), low in-

creasing to high MSLP (Fig. 15i), and high surface and

FIG. 12. Regional comparison of raw RF FIs for the day 2 version of the CTL_PCA model, shown in descending order of PC variance

explained for the 30 leading PCs. Importances of background predictors exist but are omitted from this figure. (a)–(h) ROCK, NGP,

MDWST, NE, PCST, SW, SGP, and SE regions, respectively. The scale is uniform between panels.

FIG. 11. As in Fig. 9, but for the PWAT field.
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column moisture, especially to the east and southeast of

the forecast point (Figs. 15d,f). The APCP coefficients

(Fig. 15a) are more spatially uniform than in NGP and

have their maxima more to the south of the forecast

point rather than north. The relationship with CAPE is

very weak (Fig. 15b), but high CIN (Fig. 15c) to the

north of the forecast point is found to correspond with

SGP extreme precipitation events. These latter three

variables collectively tell a similar story to NGP co-

efficients, but there is a redistribution of coefficient

values among the fields.

Some interesting coefficient differences are observed

to the east in the SE region (Fig. 16). Anomalous

easterly surface flow (Fig. 16g) over the domain is again

found to be conducive to extreme precipitation events;

this holds to an extent with anomalous surface south-

erlies as well, but the coefficient values (Fig. 16h) are

very small. High moisture across the forecast point do-

main, both throughout the surface and especially

throughout the column (Figs. 16d,h) is again found to

correspond to extreme precipitation events in the re-

gion. Low pressure (Fig. 16i) and temperature (Fig. 16e)

tend to be positive indicators of locally extreme pre-

cipitation events. Unlike the Great Plains regions, the

CAPE and CIN relationships (Figs. 16b,c) are more as

expected in association with a more diurnally tied

FIG. 13. As in Fig. 2, but for PC4 of the SE region.
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FIG. 14. Regression coefficients for the 10-yr ARI exceedance equation for the NGP region obtained through logistic regression in the

day 3 version of theCTL_LRmodel, projected back into native variable space bymeans of the PC loadings. (row a)–(row i) APCP, CAPE,

CIN, PWAT, T2M, Q2M, U10, V10, and MSLP forecast fields, respectively. (columns from left to right) Coefficients at 1200 UTC at the

beginning of the forecast period; 1800UTC during the period; and 0000, 0600, and 1200UTC at the conclusion of the forecast period. Blue
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precipitation climatology in the SE region, with fore-

casted high CAPE and low CIN during the afternoon

increasing the likelihood of an extreme precipitation

event. Interestingly, though high APCP corresponds

with increased event probability (Fig. 16a), there is little

temporal continuity of the spatial structure. What does

appear to be one of the most significant indicators, as

evidenced by the magnitude of the regression co-

efficients, is APCP to the north of the forecast point the

night prior to the start of the forecast period (Fig. 16a1),

which also leaves high CIN to the north of the forecast

point to start the period (Fig. 16c1). This may perhaps

act to favorably precondition the environment at the

forecast point.

The PCST region regression coefficients (Fig. 17)

yield some unusual and interesting findings that may

warrant further investigation. Unlike other regions,

many fields exhibit complex coefficient spatial struc-

tures, with numerous changes in sign and other smaller

features. As the CTL_NPCA model identified (Fig. 6e),

the CTL_LR model also identifies GEFS/R APCP as

by far the most predictive field of PCST extreme

precipitation events, as evidenced by the largest re-

gression coefficients in the model occurring in Figs. 16a2

and 16a3. Also like the CTL_NPCAmodel, which found

maximum APCP FIs to the south of the forecast point

(e.g., Fig. 9a4), the same is seen in the CTL_LR co-

efficients (Figs. 17a2,a3). Much of the rest of the signal

may be somewhat muddled because events occur most

frequently in association with atmospheric river events,

and these bring anomalously warm andmoist conditions

during the cold season. These tend to offset, leading to

weaker coefficients in thermodynamic fields. But for

many of these fields (e.g., Figs. 17d–f), to the extent

these coefficients may be directly interpreted, low tem-

perature and moisture at the forecast point in a sur-

rounding environment of higher temperature and

moisture tend to positively associate with extreme

precipitation events in the region. This may seem

rather counterintuitive, but there is some physical

basis for these coefficients. In the far field, the coefficients

are consistent with large-scale advection of warm, moist

air over the domain, as evidenced by the increasingly

positive temperature and moisture coefficients in

Figs. 17d–f, and particularly PWAT (Fig. 17d). The fact

that column-integrated moisture is most strongly influ-

enced is consistent with an atmospheric river signature,

where moisture is transported at mid- and upper levels

and not just near the surface. But near the forecast point,

where it is precipitating in the model (e.g., Fig. 17a3),

there is a local minimum in temperature and moisture

(Figs. 17d3,e3), consistent with column moisture con-

densing and precipitating out of the column; surface

temperatures are likewise inhibited by a lack of radia-

tional heating and perhaps diabatic cooling as well.

Unlike the other regions, extreme events are also asso-

ciated with anomalous westerly surface flow throughout

the period (Fig. 17g) in this region. In other regions,

easterly flow promotes slower storm motions; here, the

westerly flow promotes upslope flow. Meridionally

(Fig. 17h), events are associated with southerly flow

transitioning to northerly flow during the forecast pe-

riod, consistent with cyclone passage. Overall, some of

the details of these findingsmay be somewhat surprising;

given that, unlike most regions, the CTL_LRmodel had

almost equal performance to the RF-based models

(Herman and Schumacher 2018), this may invite deeper

investigation into these properties of the coefficients.

For the interested reader, coefficients associated with

the day 2 model, for unshown regions, and also for the

1-yr ARI exceedance equations have been included in

the online supplement to this manuscript.

7. Summary and conclusions

Three models of different formulation from Herman

and Schumacher (2018), each trained to forecast locally

extreme precipitation across the CONUS, are analyzed

in depth to assess their internal operations and ascertain

what insights, if any, they reveal about forecasting ex-

treme precipitation from the GEFS/R model. One

model, the CTL_NPCA model, uses raw GEFS/R fields

as input to a random forest algorithm to generate its

predictions. The second, CTL_PCA, also uses an RF,

but performs dimensionality reduction via principal

component analysis on the raw GEFS/R fields and

supplies a reduced predictor set consisting of just a

subset of retained leading PCs in lieu of the raw fields

themselves. The last, CTL_LR, also performs the PCA

preprocessing step, but rather than supply the retained

PCs to an RF, they are instead supplied to a regularized

logistic regression algorithm. It is shown that all of these

models, many of which may appear highly abstract, can

be readily visualized in different ways in order to

 
values indicate the anomalously positive values of the indicated field contribute positively to the forecast probability of an ARI ex-

ceedance, while browns indicate a negative contribution. The intersection of the thick black lines indicates the location of the forecast

point in each panel, with other locations depicting coefficients at spatially displaced locations.
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FIG. 15. As in Fig. 14, but for the SGP region.

1806 MONTHLY WEATHER REV IEW VOLUME 146



FIG. 16. As in Fig. 14, but for the SE region.
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FIG. 17. As in Fig. 14, but for the PCST region.
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understand their internal operations. Both the act of

creating derived predictors in preprocessing via PCA

and using nonparametric techniques such as RFs adds

layers of abstraction that make visualization and in-

terpretation more challenging.

Numerous aspects about forecasting locally extreme

precipitation with global, convection-parameterized

model output have been confirmed, while some new

discoveries warrant potential further investigation. Both

LR andRFs are able to identify what a human forecaster

would expect to be the most predictive variables

for extreme precipitation, with the largest regression

coefficients and FIs generally identified for model

QPFs—the direct prediction of the predictand from the

GEFS/R. Moreover, the models further validate the

findings of Herman and Schumacher (2016a) and other

studies that found the GEFS/R and like models with

parameterized convection and relatively large hori-

zontal grid spacing have better forecasts of extreme

precipitation—and in fact better QPFs all around—over

the Pacific coast of the CONUS and the worst perfor-

mance over the Great Plains and central CONUS. This is

seen to an extent in comparing the APCP regression co-

efficients for the CTL_LR model, but it is especially true

of the FIs in the CTL_NPCAmodel, which exhibit by far

the highest APCP FIs in the PCST region and the lowest

FIs in the NGP and MDWST regions. In fact, in the re-

gions where extreme precipitation is most dominated by

small-scale convective processes, such as NGP and

MDWST (e.g., Schumacher and Johnson 2005, 2006),

model QPF is not even identified as the most predictive

atmospheric field from the GEFS/R, with PWAT instead

exhibiting the highest FIs. Similarly, CAPE, as portrayed

in the GEFS/R, is not identified to be a very predictive

quantity for predicting locally excessive 24-h pre-

cipitation in most regions, but in one region, SW, where

many extreme events are associated with isolated di-

urnally and orographically forced precipitation within

monsoonal moisture, it was found to be almost equally

predictive to the QPF itself. This framework and these

models thus act to dynamically discern an appropriate

‘‘weighting’’ based on the hydrometeorology of the given

region and the characteristics of the dynamical model

from which the predictors are derived.

In time, the models again follow processes and focus

examination dynamically depending on the region in

ways consistent with how a human forecaster might

approach the forecast problem. The APCP FIs follow

the diurnal precipitation climatology in each region,

with maxima late in the forecast period over the Great

Plains and Midwest and earlier peaks over the coasts.

Environmental conditions such as PWAT maximize in

importance prior to the APCP FI maxima, diagnosing

the relevance of these environmental properties as an-

tecedent storm conditions. In space, the algorithm

tracks precipitation features through time and space

from the west edge of the predictor domain at the be-

ginning of the period to the east edge at the end of the

forecast period. Some persistent displacement biases

are also noted, with a northern displacement of the

maximum APCP FIs relative to the forecast point in

convectively active regions such as NGP, SGP, and

MDWST, in accordance with prior findings of meso-

scale convective system displacement biases from

convection-parameterized models (e.g., Grams et al. 2006;

Wang et al. 2009; Clark et al. 2010), and a southern dis-

placement in the PCST region, suggestive of a system-

atic southward displacement bias of atmospheric river

events that dominate the extreme precipitation signal in

the region. In aggregate, FIs are usually highest near the

forecast point; however, especially in northern states

east of the Rockies (NGP, MDWST, and NE), the

highest mean FIs are found downstream of the forecast

point. This is particularly true in the PWAT field, and

the precise reasons for this identification require further

investigation.

In the design of statistical forecast models, it is im-

portant to consider not necessarily just the skill of the

raw model output, but the potential skill of forecasts

issued by an experienced forecaster after considering

the statistical model’s output. If a forecast model is a

complete ‘‘black box,’’ a forecaster will inherently be

unable to use knowledge of likely errors in the inputs to

improve the estimate of the outcome or relate the cur-

rent forecast to past scenarios where both the forecast

and outcome are known, among other techniques fre-

quently adopted by human forecasters to produce a

forecast more skillful than that generated by automated

guidance. With a more transparent and comprehensible

model forecast process, however, a forecaster may be

able to improve upon the guidance in some situations

using these sorts of corrections. Of course, if a black box

statistical model produces demonstrably and sub-

stantially superior forecasts to any competing guidance,

it may well still outperform other less skillful models

where the forecaster is able to add more value. How-

ever, as has been demonstrated in this study, machine

learning algorithms including but not limited to RFs can

provide forecasting insights that allow improved in-

terpretability of the output from the statistical model,

but also reveal insights about the dynamical model that

allow improved interpretation of the dynamical model

guidance even absent any machine learning–based

model guidance. Although machine learning can iden-

tify novel properties and relationships, it should be

emphasized that it is not a panacea. The diagnostics
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presented herein do not directly identify physical rea-

sons for its findings; while some may be readily ap-

parent, others require further investigation to fully

understand the identified patterns in these machine

learning models. That said, with existing machine

learning models demonstrating considerable skill in

forecasting locally extreme precipitation, as well as a

host of other sensible weather phenomena, it is rec-

ommended that expected future forays into NWP with

machine learning consider not only the properties of

the raw forecasts that the developed models produce,

but also the visualizability of the model construction

and what physical insights and understanding may be

gleaned from such visualization.

There are various concrete ways that these diagnostics

may assist human forecasters, as well as help guide fu-

ture research. Even absent using the statistical model

output, these diagnostics can help a human forecaster

better interpret raw dynamical guidance from the parent

model—the GEFS/R, in this case. For example, the di-

agnostics suggest that a forecaster should shift his or her

area of highest excessive precipitation risk to the south

of where the heaviest precipitation is portrayed over the

Great Plains and eastern regions of the CONUS, while

shifting to the north along the Pacific coast. It also sug-

gests that convective systems portrayed in the GEFS/R

may be systematically too progressive, particularly in

the NGP and MDWST regions—something that likely

warrants further investigation. The diagnostics also help

point forecasters at which fields to devote the most at-

tention toward; in PCST, the GEFS/R’s QPFs should

be given considerable credence, while in NGP and

MDWST, more attention should be paid to the GEFS/R

PWAT field in trying to determine risk of locally ex-

treme precipitation. The diagnostics presented in this

paper provide some ability to modifying the statistical

model output based on external assessments as well. For

example, if a forecaster judges that the GEFS/R is much

too dry aloft in a region, he or she may consult the re-

gression coefficients and adjust probabilities accord-

ingly, depending on the sign of the PWAT regression

coefficients for the region. For RFs, if PWAT FIs are

very low, the forecaster can maintain confidence in the

forecast, while if they are quite high, the forecaster may

choose to discount the output from themachine learning

model. Additional corrections may be identifiable by

performing a detailed meteorology-dependent verifica-

tion of the machine learning–based forecasts over an

extended historical record. A start to this type of anal-

ysis was performed in Herman and Schumacher (2018);

future work should further break down model perfor-

mance by meteorological regime, the analysis of which

would provide even further aid to the human forecaster.

It is imperative for statistical modelers to investigate

the internals of trained models to the extent possible.

When performance is not appreciably degraded—and it

certainly can be—it may in some instances be preferable

to employ algorithms that are more easily interpretable,

such as RFs in lieu of algorithms whose output is more

difficult to visualize, such as support vector machines or

neural networks (e.g., Rozas-Larraondo et al. 2014).

Additionally, while traditional PCA was applied be-

cause the orthogonality and maximum variance con-

straints were believed to be beneficial for model skill

and yield desirable independence properties, their po-

tential for less physically grounded components suggests

that applying more directly interpretable preprocessing

instead, such as sparse PCA (Zou et al. 2006) or rotated

PCA (e.g., Richman 1986; Mercer et al. 2012; Peters and

Schumacher 2014), could yield more directly and easily

interpretable statistical model results. Future work will

seek to further explore the comparison of machine

learning algorithms for NWP in additional settings as

well as working to invent or apply improvedmethods for

understanding what the machine learning informs us

about the phenomenon of study.
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